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Abstract

In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is
presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D
coordinate system, accounting for continuous variability in particle distribution of the
pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic5

particles of many different sizes ranging from a few microns up to several centimeters
and more. Proper description of such a multiparticle nature is crucial when quantifying
changes in grain-size distribution along the plume and, therefore, for better charac-
terization of source conditions of ash dispersal models. The new model is based on
the method of moments, which allows description of the pyroclastic mixture dynamics10

not only in the spatial domain but also in the space of properties of the continuous
size-distribution of the particles. This is achieved by formulation of fundamental trans-
port equations for the multiparticle mixture with respect to the different moments of the
grain-size distribution. Different formulations, in terms of the distribution of the parti-
cle number, as well as of the mass distribution expressed in terms of the Krumbein15

log scale, are also derived. Comparison between the new moments-based formulation
and the classical approach, based on the discretization of the mixture in N discrete
phases, shows that the new model allows the same results to be obtained with a signif-
icantly lower computational cost (particularly when a large number of discrete phases
is adopted). Application of the new model, coupled with uncertainty quantification and20

global sensitivity analyses, enables investigation of the response of four key output
variables (mean and standard deviation (SD) of the grain-size distribution at the top of
the plume, plume height and amount of mass lost by the plume during the ascent) to
changes in the main input parameters (mean and SD) characterizing the pyroclastic
mixture at the base of the plume. Results show that, for the range of parameters inves-25

tigated, the grain-size distribution at the top of the plume is remarkably similar to that
at the base and that the plume height is only weakly affected by the parameters of the
grain distribution.
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1 Introduction

In the past decades, numerical simulation of volcanic eruptions has greatly advanced
and models are now often able to deal with the multiphase nature of volcanic flows.
This is the case, for example, of models describing the dynamics of pyroclastic par-
ticles in a volcanic plume, or that of bubbles and crystals dispersed in the magma5

rising in a volcanic conduit. Despite this, in numerical models, the polydispersity as-
sociated with the multiphase nature of volcanic flows is often ignored or largely sim-
plified. For instance, in most of the existing conduit models, crystals and bubbles are
treated as simple flow components and described by volume fractions only, while in
plume dynamics and ash dispersal models the grain size distribution of pyroclasts is10

discretized in a finite number of classes (i.e. phases). Both approaches make proper
treatment of the continuous variability of fundamental physical and chemical properties
of the dispersed phases, for instance, the dimension of pyroclastic particles and gas
bubbles difficult. Literature results clearly show that this variability can largely affect
relevant physical/chemical processes that occur during the transport of the dispersed15

phase such as, for example, the nucleation and growth of bubbles and the coales-
cence/breakage of bubbles and crystals in the conduit or the aggregation of pyroclastic
particles in a volcanic plume. Recently, a theoretical framework and the correspond-
ing computational models, namely the method of moments for disperse multiphase
flows, have been developed, mostly in the chemical engineering community (Hulburt20

and Katz, 1964; Marchisio et al., 2003), to track the evolution of these systems not
only in the physical space, but also in the space of properties of the dispersed phase
(called internal coordinates). According to this method, a population balance equation
is formulated as a continuity statement written in terms of a density function. From the
density function transport equation some integral quantities of interest (namely the mo-25

ments) are then derived and their transport equations are formulated. In this work we
present an extension of the Eulerian steady-state volcanic plume model presented in
Barsotti et al. (2008) (derived from Bursik, 2001) obtained by adopting the method of
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moments. In contrast to the original works where pyroclastic particles are partitioned
into a finite number of classes with different size and properties, the new model is able
to consider a continuous size distribution function of pyroclasts, f (D), representing the
number or the mass fraction of particles (for unit volume) with diameter between D and
D+dD. Accordingly, transport equations of the plume are expressed in terms of the5

transport equations for the moments of the ash particles size distribution. In this work
we present the new multiphase model formulation based on the implementation of the
quadrature and we investigate the sensitivity of the model to uncertain or variable in-
put parameters such as those describing the grain-size distribution of the mixture. To
quantify and incorporate uncertainty into our application of the model we tested two10

different approaches, a modification of the Monte Carlo method based on Latin hyper-
cube sampling and a stochastic approach, namely the generalized Polynomial Chaos
Expansion method.

This paper is organized as follows: in Sect. 2 we present the method of moments ap-
plied to two different descriptions of particles distribution. In Sect. 3 the equations of the15

model for the two formulations are described. Section 4 is devoted to the numerical dis-
cretization of the model and the numerical implementation of the method of moments.
Section 5 presents the application of the model to three test cases with a compari-
son of the model results for different formulations of the plume model, and finally an
uncertainty quantification and a sensitivity analysis are applied to model results.20

2 Method of moments

2.1 Moments of the size distribution

In contrast to previous works, where the solid particles are partitioned in a finite num-
ber of classes with different size, we introduce here a continuous size distribution func-
tion representing the number (or mass) concentration of particles (for unit volume) as25
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a function of the particles diameter. In general, this particle size distribution (PSD) is
a function of time t, of the spatial coordinate and of the diameter of the particles.

First, we present the method of moments for a particle size distribution f (D), repre-
senting the number concentration of particles (particles for unit volume) with diameter
between D and D+dD, where D is expressed in meters. When more than one fam-5

ily of particles are present, for example lithics and pumice, we will use the subscript
j to distinguish among them. Consequently, the function fj (D) will denote the number
concentration of particles of the j th family.

Given a particle size distribution fj (D), we observe that its “shape” can be quantified

through the moments M (i )
j (Hazewinkel, 2001), defined by10

M (i )
j =

+∞∫
0

Di fj (D)dD. (1)

The particular definition of fj (D) we adopt, expressing the number concentration of
particles of size D, allows the following physical interpretation of the first four moments:

– M (0)
j is total number of particles of the j th family (per unit volume);

– M (1)
j is sum of the particles diameter of the j th family (per unit volume);15

– M (2)
j is total surface area of particles of the j th family (per unit volume);

– π
6M

(3)
j : total volume of particles of the j th family (per unit volume) or the local

volume fraction of the j th dispersed phase, also denoted with αs,j .

Furthermore, a mean particle size can be defined as the ratio of the moments
M (i+1)
j /M (i )

j for any value of i . For example, the Sauter mean diameter is defined by20
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setting i = 2, giving Lj ,32 =M
(3)
j /M

(2)
j . Similarly, it is possible to define the mean parti-

cle length averaged with respect to particle number density Lj ,10 =M
(1)
j /M

(0)
j , i.e. the

sum of the lengths of particles per unit volume divided by the number of particles,
and the mean particle length averaged with respect to particle volume-fraction density
function Lj ,43 =M

(4)
j /M

(3)
j .5

The motivation for the introduction of the moments is to minimize computational costs
by avoiding the discretization of the size distribution in several classes, and neverthe-
less to capture the polydispersity of the flow through the correct description of the evo-
lution of the moments (Carneiro, 2011). The moments and the corresponding transport
velocities appear naturally in the mathematical formulation as a direct consequence of10

the integration of the Eulerian particle equations over the diameter spectrum, as will be
shown in the next section.

2.2 Moments of other quantities

In the plume model, several quantities characteristic of the particles, as settling velocity,
density and specific heat capacity, are also defined as function of the particle diameter,15

and thus we can define their moments as done for the distribution fj (D). In general, for
a quantity ψj function of the diameter D, we define its moments as

ψ (i )
j =

1

M (i )
j

+∞∫
0

ψj (D)Di fj (D)dD. (2)

As a first example, we consider here the moments of particles density ρs. In par-
ticular, following Bonadonna and Phillips (2003), density of lithics is assumed to be20

constant, whereas density of pumices with diameter D < D2 is assumed to decrease
linearly and to reach the lithic density value when the fragment diameter decreases
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below D1:

ρs,pum(D) =


ρ1 D < D1

ρ1 +
D−D1
D2−D1

(ρ2 −ρ1) D1 ≤ D ≤ D2

ρ2 D > D2

(3)

Substituting the expression for the particles density of the j th particle family in
Eq. (2), we obtain the moments of the density as:

ρ(i )
s,j =

1

M (i )
j

+∞∫
0

ρs,j (D)Di fj (D)dD. (4)5

We remark that moments of different order are generally different, they will only be
equal (ρ(l )

s,j = ρ
(m)
s,j , l 6=m) in two limiting cases: for a monodisperse distribution, i.e.

fj (D) = δ(D−D∗), with ρs,j (D
∗) = ρ∗s; or if all particles have the same density, i.e.

ρs,j (D) = ρ∗s,j , ∀D. In both cases, ρ(i )
s,j = ρ

∗
s,j , ∀i . Otherwise, there is no reason, e.g.,

for ρ(1)
s,j and ρ(3)

s,j to be the same, as they represent length and volume weighted density10

averages, respectively. For our application, we are interested mostly in the volumetric
averaged density ρ(3)

s,j , i.e. the mass of particles per unit volume from now on denoted
with ρ̃s,j .

The moments defined by Eq. (4) can also be used to define other properties of the
gas-particles mixture. For example, it follows from the definition of the moments that if15

we have a mixture of a gas with density ρg and a family of polydisperse distributions of
particles with density ρs,j = ρs,j (D), the mixture density is given by:

ρmix =
∑
j

αs,j ρ̃s,j +

1−
∑
j

αs

ρg =
∑
j

π
6
M (3)
j ρ

(3)
s,j +

1−
∑
j

π
6
M (3)
j

ρg (5)

3751

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 3745–3790, 2015

PLUME-MoM

M. de’ Michieli Vitturi
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and consequently the mass fraction of the j th solid phase with respect to the gas-
particles mixture is given by:

xs,j =
αs,j ρ̃s,j

ρmix
=

π
6M

(3)
j ρ

(3)
s,j∑

j

π
6M

(3)
j ρ

(3)
s,j +

(
1−
∑
j

π
6M

(3)
j

)
ρg

. (6)

We also remark that here the gas phase is a mixture of atmospheric air, entrained in
the plume during the rise in the atmosphere, and a volcanic gas component, generally5

water vapour. In the following, we will use the subscript atm to denote the atmospheric
air and wv for the volcanic water vapour.

Differently from the approach used in Barsotti et al. (2008), where the settling velocity
for each class is provided by the user, here several models have implemented in the
code Pfeiffer et al. (2005); Textor et al. (2006a, b). For the application presented in this10

work, the settling velocity is defined as a function of the particle diameter and density
as in Textor et al. (2006a),:

ws,j (D) =



k1
(D

2

)2
ρs,j (D)

√
ρ0

atm
ρatm

D ≤ 10µm

k2
(D

2

)
ρs,j (D)

√
ρ0

atm
ρatm

10 < D ≤ 103 µm

k3

√
D
2

√
ρs,j (D)
CD

√
ρ0

atm
ρatm

D > 103 µm

(7)

Proceeding as done for the particle density, it is possible to evaluate the moments w (i )
s,j

of the settling velocity ws,j (D), defined as15

w (i )
s,j =

1

M (i )
j

+∞∫
0

ws,j (D)Di fj (D)dD (8)
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and representing weighted integrals of the settling velocity over the size spectrum.
Again, moments of different order are generally different. There is no reason, e.g., for
w (2)
s,j and w (3)

s,j to be the same, as they represent surface and volume weighted averages,
respectively.

Finally, it is possible to define the moments C(i )
s,j of the particles specific heat capacity5

Cs,j :

C(i )
s,j =

1

M (i )
j

+∞∫
0

Cs,j (D)Di fj (D)dD. (9)

We observe that for the specific heat capacity generally we are not interested in a volu-
metric average but in the mass average, denoted here with the notation Cs,j and given
by the following expression:10

Cs,j =

+∞∫
0

Cs,j (D)
ρs,j (D)D3

ρ̃s,jM
(3)
j

fj (D)dD =
1

ρ̃s,j

[
Cs,jρs,j

](3)
. (10)

2.3 Mass fraction distribution

While in chemical engineering, where the method of moments is commonly used, the
particle number distribution fj (D) is generally preferred to describe the polidispersity
of the particles, in volcanology it is more common to use a mass fraction distribution15

ϕj (φ), defined as a function of the Krumbein phi (φ) scale:

φ = −log2
1000D
D0

,

where D is the diameter of the particle expressed in meters, and D0 is a reference
diameter, equal to 1 mm (to make the equation dimensionally consistent).
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In this case, the distribution ϕj (φ) represents the mass fraction of particles (mass
per unit mass of the gas-particles mixture) of the j th family with diameter between
φ and φ+dφ. Again, the shape of the distribution ϕj (φ) can be characterized by its

moments Π(i )
j , defined by

Π(i )
j =

+∞∫
−∞

φiϕj (φ)dφ. (11)5

Also in this case the particular definition of ϕj (φ) allows a physical interpretation of

the moments: for example, the moment Π(0)
j is the mass fraction of the j th solid phase

xs,j with respect to the gas-particles mixture. As done with the particles number dis-
tribution, it is possible to define a mean particle size in terms of the moments of the
mass fraction distribution as Π(i+1)

j /Π(i )
j ; this ratio, for i = 0, gives the mass averaged10

diameter, corresponding to the volume averaged diameter Lj ,43 =M
(4)
j /M

(3)
j when the

density ρs,j (φ) is constant.
Again, it is possible to define the moments of other quantities ψj (φ) in terms of the

continuous distribution of mass fraction ϕj (φ) as

ψ (i )
j =

1

Π(i )
j

+∞∫
−∞

ψj (φ)φiϕj (φ)dφ. (12)15

For example, when the mass fraction distribution ϕj (φ) is used, the mass averaged

heat capacity Cs,j is given by the following expression:

Cs,j =

+∞∫
−∞

Cs,j (φ)
ϕs,j (φ)

xs,j
dφ =

1

Π(0)
j

[
Cs,j
](0)

(13)
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and the volumetric averaged density, i.e. the mass of particles per unit volume, can be
evaluated from

1

ρ̃s,j
=

1
xs,j

+∞∫
−∞

ϕs,j (φ)

ρs,j (φ)
dφ =

1

Π(0)
j

[
1
ρs,j

](0)

. (14)

3 Plume model

The equation set for the plume rise model is solved in a 3-D coordinate system (s,φ,θ)5

by considering the bulk properties of the eruptive mixture (see Fig. 1). The plume is
assumed with a circular section along the curvilinear coordinate s, an inclination on the
ground defined by an angleφ between the axial direction and the horizon, and an angle
θ in the horizontal plane (x,y) with respect to the x axis. This last feature is needed
to describe the evolution of weak explosive eruptions which are strongly affected by10

atmospheric conditions.
Following Bursik (2001) and Ernst et al. (1996), the conservation of flux of particles

with size D of the j th family is given by:

d
ds

(
fj (D)πr2Usc

)
= −2πrpws,j (D)fj (D) (15)

where r is characteristic plume radius, Usc represents the velocity of the plume cross15

section along its centerline and p is a probability that an individual particle will fall out
of the plume, defined as a function of an entrainment coefficient α (see below)

p =

(
1+ 6

5α
)2 −1(

1+ 6
5α
)2
+1

. (16)

Equation (15) states that the number of particles of the j th family with size D lost from
the plume is proportional to the number of particles at the plume margin, given by20

fj (D) ·2πr , to the settling velocity ws,j (D) and to the probability factor p.
3755

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 3745–3790, 2015

PLUME-MoM

M. de’ Michieli Vitturi
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Now, multiplying both the sides of Eq. (15) for Di and then integrating over the size
spectrum [0,+∞], we obtain the following conservation equations for the momentsM (i )

j :

d
ds

(
M (i )
j Uscr

2
)
= −2rpw (i )

s,jM
(i )
j . (17)

If we compare our formulation with that presented in Barsotti et al. (2008), where the
effects of a polydisperse solid phase are taken into account partitioning the size spec-5

trum in a finite number N of solid classes, the set of Eq. (17) replaces the N mass
conservation equations for the N particulate classes.

From Eq. (15), if we multiply both the terms for the mass of the particles of size D,
given by π

6D
3ρj (D), we obtain the additional equation:

d
ds

(
fj (D)

π
6
D3ρj (D)πr2Usc

)
= −2πrpws,j (D)fj (D)

π
6
D3ρj (D) (18)10

and, integrating over the size spectrum:

d
ds

(
Uscr

2π
6
M (3)
j ρ

(3)
j

)
= −2rp

π
6
M (3)[ws,jρs,j

](3)
, (19)

where on the left hand-side the term π
6M

(3)
j ρ

(3)
j represents the volume average bulk den-

sity of the particles of the j th family, while on the right-hand side the term
[
ws,jρs,j

](3)

represents the mass averaged settling velocity of the particles of the j th family multi-15

plied by the volume averaged particles density. Equation (19) is the mass conservation
equation for the j th family of particles, relating the variation of the mass flux of particles
within the plume with the loss at the plume margin.

Now, following the same procedure, we want to reformulate the other conservation
equations describing the steady-state ascent of the plume in terms of the moments20

of the continuous distributions of sizes, densities and settling velocities instead of the
averages over a finite number of classes of particles with different size.
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First of all, we derive the conservation equation for the mixture mass. As in the plume
theory, we assume that the entrainment, due to both turbulence in the rising buoyant
jet and to the crosswind field, is parameterized through the use of two entrainment
coefficients, α and γ. The theory assumes that the efficiency of mixing with ambient
air is proportional to the product of a reference velocity (the vertical plume velocity in5

one case and the wind field component along the plume centerline in the other), by α
and γ (Morton, 1959; Briggs, 1975; Wright, 1984; Weil, 1988). Thus, following Bursik
(2001), we define the entrainment velocity Uε as a function of windspeed, Uatm, as well
as axial plume speed, Usc:

Uε = α|Usc −Uatm cosφ|+γ|Uatm sinφ| (20)10

where α|Usc −Uatm cosφ| is entrainment by radial inflow minus the amount swept tan-
gentially along the plume margin by the wind, and γ|Uatm sinφ| is entrainment from
wind. With this notation, the total mass conservation equation solved by the model
becomes
d
ds

(
ρmixUscr

2
)
= 2rρatmUε −2rp

∑
j

π
6
M (3)
j

[
ws,jρs,j

](3)
, (21)15

stating that the variation of mass flux (left-hand side term) is due to air entrainment
(first right-hand side term) and loss of solid particles (second right-hand side term), as
obtained from Eq. (19).

From the variation of mass flux, we can derive also the horizontal and vertical com-
ponents of the momentum balance solved by the model as:20

d
ds

(
ρmixUscr

2(u−Uatm)
)
= −r2ρmixw

dUatm

dz
−2upr

∑
j

π
6
M (3)
j

[
ws,jρs,j

](3)
, (22)

and
d
ds

(
ρmixUscr

2w
)
= gr2(ρatm −ρmix)−2wpr

∑
j

π
6
M (3)
j

[
ws,jρs,j

](3)
, (23)
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where the two components of plume velocity along the horizontal and vertical axes are

u and w, respectively, and they are linked by the relation Usc =
√
u2 +w2. In the right-

hand side of Eq. (22) the terms related to the exchange of momentum due to the wind
and to momentum loss from the fall of solid particles appear. Similar contributions are
evident in the right-hand side term of Eq. (23) where the vertical momentum is changed5

by the gravitational acceleration term and the segregation of particles.
Now, following the notation adopted above and denoting with T the mixture temper-

ature, the equation for conservation of thermal energy solved by the model writes as

d
ds

(
ρmixUscr

2CmixT
)
= 2rρatmUεCatmTatm − r2wρatmg

−2Tpr
∑
j

π
6
M (3)
j

[
Cs,jws,jρs,j

](3)
.

(24)

The first term on right-hand side describes the cooling of the plume due to ambient air10

entrainment, the second one takes into account atmospheric thermal stratification, and
the third term allows for heat loss due to loss of solid particles. Again, this last term is
obtained writing the heat loss for the particles of size D, and then integrating over the
size spectrum. A thermal equilibrium between solid and gaseous phases is assumed.
In Eq. (24) Catm and Cmix are the heat capacity of the entrained atmospheric air and of15

the mixture, respectively, the latter being defined as:

Cmix =

1−
∑
j

xs,j

Cp,g +
∑
j

xs,jCs,j (25)

or, in terms of the bulk densities ρBatm, ρBwv and ρBs,j =
π
6M

(3)
j ρ̃s,j , as

Cmix =

ρBatmCatm +ρBwvCwv +
∑
j
ρBs,jCs,j

ρBatm +ρBwv +
∑
j
ρBs,j

. (26)
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From this expression, if we multiply all the terms at the numerator and the denominator
of the right-hand side by Uscr

2 and we derive with respect to s, we obtain after some
cancellation and algebra manipulations the following equation for the variation of the
mixture specific heat with s:

∂Cmix

∂s
=

1

ρmixUscr2

(Catm −Cmix)
∂
∂s

(
ρBatmUscr

2
)
+
∑
j

(
Cs,j −Cmix

) ∂
∂s

(
ρBs,jUscr

2
)

+
∑
j

ρBs,j

ρmix

 ∂
∂s

(
Cs,jρ

B
s,jUscr

2
)

ρBs,jUscr2
−
Cs,j

∂
∂s

(
ρBs,jUscr

2
)

ρBs,jUscr2

 .

(27)5

Now, substituting the expressions for the partial derivatives appearing in each term on
the right-hand side, we obtain the equation for the variation rate of mixture specific heat
in terms of the moments:

∂Cmix

∂s
=

1

ρmixUscr2

[
Catm2rρatmUε −Cmix

(
2rρatmUε −2pr

∑
j

π
6
M (3)
j

[
ws,jρs,j

](3)
)

−2pr
∑
j

π
6
M (3)
j

[
ws,jρs,jCs,j

](3)
] (28)

Similarly, a gas constant Rg can be defined as a weighted average of the gas con-10

stant for the entrained atmospheric air Ratm and the gas constant of the volcanic water
vapour Rwv

Rg =
ρBatmRatm +ρBwvRwv

ρBatm +ρBwv

(29)
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and a conservation equation can be derived, knowing that the variation of gaseous
mass fraction with height is solely due to entrained air:

∂Rg

∂s
=

Ratm −Rg
ρmix(1−xs)Uscr2

·2rρatmUε. (30)

This formulation reduces, for particular cases, to the expressions of Woods (1988)
and Glaze and Baloga (1996). Equations (28) and (30) are needed in order to close5

the system of equations and recover the new values of the temperature and the mix-
ture density once the system of ordinary differential equations is integrated. Otherwise,
to obtain for example the values of the temperature at s+ds from the lumped term
(ρmixUscr

2CmixT ) obtained integrating Eq. (38), we should use the values at s of ρmix
and Cmix.10

Finally, as in Bursik (2001), the equations expressing the coordinate transformation
between (x,y ,z) and (s,φ,θ) are given by:

∂z
∂s

= sinφ,
∂x
∂s

= cosφcosθ,
∂y
∂s

= cosφsinθ. (31)

3.1 Mass fraction distribution

Similarly as done for the distribution of particles number fj (D) and the moments M (i )
j ,15

it is possible to derive a set of conservation equations in terms of the moments Π(i )
j of

the mass fraction distribution ϕj (φ) expressed as a function of the Krumbein scale.
In this case, the conservation of mass flux of particles with size φ of the j th family

write as:

d
ds

(
ρmixϕj (φ)πr2Usc

)
= −2πrpws,j (φ)ρmixϕj (φ). (32)20

Multiplying both sides of the equation for φi and integrating over the size spectrum
[−∞,+∞], we obtain the following conservation equations for the moments of the con-
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tinuous distributions ϕj (φ):

d
ds

(
Π(i )
j ρmixUscr

2
)
= −2rpρmixw

(i )
s,jΠ

(i )
j . (33)

For i = 0, the equations of conservation of the moments give:

d
ds

(
xs,jρmixUscr

2
)
= −2rpρmixw

(0)
s,j xs,j (34)

expressing the loss of mass flux of the particles of the j th family and thus we can write5

the total mass conservation equation as

d
ds

(
ρmixUscr

2
)
= 2rρatmUε −2rpρmix

∑
j

w (0)
s,jΠ

(0)
j . (35)

From the variation of mass flux, as done for the distribution of particles number fj (D)

and the moments M (i )
j , we derive the horizontal and vertical components of the mo-

mentum balance:10

d
ds

(
ρmixUscr

2(u−Uatm)
)
= −r2ρmixw

dUatm

dz
−2uprρmix

∑
j

w (0)
s,jΠ

(0)
j , (36)

d
ds

(
ρmixUscr

2w
)
= gr2(ρatm −ρmix)−2wprρmix

∑
j

w (0)
s,jΠ

(0)
j . (37)

The equation for conservation of thermal energy writes as

d
ds

(
ρmixUscr

2CmixT
)
= 2rρatmUεCatmTatm − r2wρatmg−2Tprρmix

∑
j

[
Cs,jws,j

](0)Π(0)
j

(38)
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and the equation for the variation rate of mixture specific heat in terms of the moments
of the mass fraction distribution write as:

∂Cmix

∂s
=

1

ρmixUscr2

[
Catm2rρatmUε −Cmix

(
2rρatmUε −2rpρmix

∑
j

w (0)
s,jΠ

(0)
j

)

−2prρmix

∑
j

[
Cs,jws,j

](0)Π(0)
j

]
.

(39)

The formulation of the equations for the gas constant Rg and the coordinates of the
(x,y ,z) remain unchanged.5

4 Numerical scheme

The plume rise equations are solved with a predictor-corrector Heun’s scheme (Ascher
and Petzold, 1998) that guarantees a second–order accuracy, keeping the execution
time in the order of seconds. If we rewrite the system of ordinary differential equation
with the following compact notation:10

∂y
∂s

= f (s,y), y(s0) = y0, (40)

where y is the vector of the quantities in the left-hand sides of the conservation equa-
tions presented in the previous section, then the procedure for calculating the numer-
ical solution by way of Heun’s method (Süli and Mayers, 2003) is to first calculate the
intermediate values ỹi+1 and then the solution yi+1 at the next integration point15

ỹi+1 = yi +dsf (si ,yi ), predictor step

yi+1 = yi +
ds
2

(
f (si ,yi )+ f (si+1, ỹi+1)

)
corrector step.

(41)
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4.1 Quadrature method of moments

We observe that to calculate the right-hand side for both the predictor and corrector
step we need not only the moments M i , but also the additional moments [ws]

i , [wsρs]
i

and [wsρsCs]
i . As in Marchisio and Fox (2013), the integral in the definition of these

moments is replaced by a quadrature formula and the moments, for a generic variable5

ψ = ψ(D), are approximated as:

ψ (i ) =
1

M (i )

+∞∫
0

ψ(D)f (D)DidD ≈
N∑
l=1

ψ(Dl )D
i
lωl (42)

Here ωl and Dl are known as “weights” and “nodes” (or “abscissae”) of the quadra-
ture, respectively, and the accuracy of a quadrature formula is quantified by its degree.
The degree of accuracy is equal to d if the interpolation formula is exact when the10

integrand is a polynomial of order less than or equal to d and there exists at least one
polynomial of order d +1 that makes the interpolation formula inexact. In particular, an
N-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature
rule constructed to yield an exact result for polynomials of degree 2N −1 or less by
a suitable choice of the nodes Dl and weights ωl for l = 1, . . .,N.15

The Wheeler algorithm, as presented in Marchisio and Fox (2013), provides an ef-
ficient O(N2) algorithm for finding a full set of weights and abscissas for a realizable
moment set. The resulting nodes Dl are always within the support (and therefore rep-
resent realizable values of the particle size), and the weights ωl are always positive,
ensuring that, when the quadrature is used, accurate results are obtained. Neverthe-20

less, these properties are respected only if the moment set is realizable, meaning that
there exists a particle size distribution resulting in that specific set of moments. If the
Wheeler algorithm is fed with invalid moment sets, unrealizable nodes can be calcu-
lated, jeopardizing the stability of the simulation.

A strategy that might overcome the problem of moment corruption is replacing unre-25

alizable moment sets as soon as they appear. An algorithm of this kind was developed
3763
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by McGraw (McGraw, 2006). The algorithm first verifies whether the moment set is
realizable (by looking at the second-order difference vector or by looking at the Hankel-
Hadamard determinants). If the moment set is unrealizable it proceeds with the cor-
rection. In the numerical model here presented, the implementation of the correction
algorithm of Wright is derived from the version presented in Marchisio and Fox (2013).5

Thus, for each integration step, the following steps are performed:

– the nodes Dj ,l and weights ωj ,l are calculated with the Wheeler algorithm for
l = 1, . . .,N;

– the quadrature formula (Eq. 42) is used to evaluate the moments [ws]
(i )
j , [wsρs]

(i )
j

and [wsρsCs]
(i )
j ;10

– the right-hand side of the ODE’s system (Eq. 40) is evaluated explicitly;

– the solution is advanced with the predictor (or the corrector) step of the Heun’s
scheme;

– for each particles family j , the moments M (i )
j (i = 0, . . .,2N −1), if required, are

corrected with the McGraw (or Wright) algorithm.15

We observe that if the j th family of particles is monodisperse with diameter d j , the
Wheeler algorithm fed with the first two moments only gives as result a single quadra-
ture node Dj ,1 = d j with weight ωj ,1 = 1. This allows us also to use the model for the
simplified case where the solid particle distribution is partitioned in a finite number of
classes with constant size, assigning to each class a monodisperse distribution.20

4.2 Initial condition

Initial conditions at the vent include the initial plume radius (r0), mixture velocity (Usc,0)
and temperature (T0), gas mass fraction (n0) and the particles size distribution through
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the initial momentsM (i )
0 . The initial moments are evaluated analytically according to the

particle size distribution, as described below.

4.2.1 Lognormal distribution

For the application presented in this work, the initial distribution f (D) at the base of
the plume is defined as a function of the particles diameter expressed in meters (m),5

in order to give a corresponding normal distribution with parameters µ and σ for the
mass concentration expressed as a function of the Krumbein phi (φ) scale (when all
the particles have the same density).

Given the parameters µ and σ, the initial distribution then writes as:

f (D) =
6C0

(−σ log2)D4
√

2π3
e
− [− log(1000D)−µ log2]2

2(σ log2)2 . (43)10

where C0 is a parameter that has to be chosen in order to satisfy the condition on the
initial mass (or volume) fraction of particles.

We observe that if we introduce the following re-scaled variables for the diameter,
the mean and the variance:

D = 1000D, µ = −µ log2, σ = −σ log2, (44)15

then it is possible to rewrite the particle distribution f (D) in terms of a lognormal distri-
bution in the variable D with parameters µ and σ:

f (D) =
6 ·1012C0

πD
3

1

σD
√

2π
e
− [log(D)−µ]2

2σ2 =
6 ·1012C0

πD
3

lognorm (D,µ,σ). (45)
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Consequently, we can evaluate the momentsM (i ) of f (D) analytically from the moments
of the lognormal distribution as:

M (i ) =
6C0

π
103(3−i ) exp

[
(i −3)µ+

1
2

(i −3)2σ
2
]

, (46)

and we obtain, from the third moment:

M (3) =
6C0

π
⇒ C0 = α

0
s (47)5

where α0
s is the initial volume fraction of the particles in the solid-gas mixture.

From the expressions of the moments it follows also that, if the mass concentration
expressed as a function of the Krumbein scale has a lognormal distribution, the Sauter
mean diameter DA expressed in meters can be evaluated as

DA = L32 =
M (3)

M (2)
= 10−3 exp

(
µ− 1

2
σ

2
)

, (48)10

or, if expressed in φ, as

DφA = Lφ32 = µ+
1
2
σ2 log(2). (49)

We observe that processes involving the mutual interaction between particles and
the interaction between the particles and the carrier fluid (friction and cohesion be-
tween the particles; viscous drag; chemical reactions between fluid and solid compo-15

nents) operate at the surface of the particles. For this reason the Sauter mean diameter,
based on the specific area of the particles, play a major role and it is important to re-
mark that it differs from the mean µ of the lognormal distribution by a factor proportional
to the variance σ2. For numerical models describing the multiphase (particulate) nature
of the matter and which approximate the particle size distribution with an average size,20
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it is hence more appropriate to use, as particle size representative of a lognormal dis-
tribution, the Sauter mean diameter than the mean diameter µ. The difference between
the two approximations is smaller the narrower the particle size distribution. We must
also remark that, while for particles in the inertial-dominated regime (e.g. Rep > 2000)
Loth et al. (2004) showed that the Sauter mean diameter is the effective diameter, re-5

gardless of particle shape, particle size distribution, particle density distribution or net
volume fraction, for particles in the creeping flow regime (Rep� 1) the effective mean
diameter is the volume-width diameter.

When the Sauter mean diameter is used, also the variance and the SD should be
based on the specific surface area (Rietema, 1991). Hence:10

σ2
A =

+∞∫
0

(
1
D
− 1
DA

)2π
6
D3f (D)dD, (50)

or, expressed as a function of the moments:

σ2
A =

M (1)M (3) − (M (2))2

(M (3))2
. (51)

Finally, we observe that if the mass concentration expressed as a function of the
Krumbein scale has a lognormal distribution and both the Sauter mean diameter15

L32 =M
(3)/M (2) and the mean particle length averaged with respect to particle number

density L10 =M
(1)/M (0) (or if the first 4 moments) are known then we can solve for the

re-scaled mean and variance µ and σ the following system:L10 = 10−3 exp
(
µ− 5

2σ
2
)

L32 = 10−3 exp
(
µ− 1

2σ
2
) (52)

Once the re-scaled mean and variance are known, we can obtain µ and σ in the20

Krumbein φ scale.
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When the initial distribution is expressed for the mass fractions instead of the particle
number, and the mass fraction written as a function of the Krumbein scale has a nor-
mal distribution with mean µ and variance σ2, then we can express the continuous
distribution as

ϕ(φ) =
K0

σ
√

2π
e−

(φ−µ)2

2σ2 , (53)5

where K0 is a parameter that has to be chosen in order to satisfy the condition on the
initial mass fraction of particles. We observe that this expression of the distribution is
not based on the assumption of constant density for the particles of different size.

In this case, the moments Π(i ) are given by the following expression

Π(i ) = K0

di/2e∑
j=0

(
i

2j

)
(2j −1)!!σ2jµi−2j . (54)10

where the symbol “!!” denotes the double factorial.
Now, being the 0-th moment equal to the mass fraction of particles, we obtain

K0 = xs. Furthermore, we observe that the mass fraction averaged diameter in the
φ scale is given by the ratio Π(1)/Π(0), while the variance of the mass fraction distribu-

tion can be evaluated as
[
Π(2)Π(0) − (Π(1))2

]
/(Π(0))2. These two quantities correspond15

to the parameters (µ,σ2) generally used to describe the mass fraction when a nor-
mal distribution in the φ scale is assumed. For this reason, when we want to track the
changes of the mass fraction averaged diameter and its SD (or variance) in the φ scale
during the plume rise, it is preferred to use a formulation based on the moments Π(i )

than the moments M (i ).20
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5 Application

5.1 Simulation inputs

We applied the model to three different test cases with different vent and atmospheric
conditions:

– Test Case 1 – weak plume without wind;5

– Test Case 2 – weak plume with wind;

– Test Case 3 – strong plume.

The parameters used for the different test cases are listed in Table 1, while the at-
mospheric conditions are plotted in Fig. 3. For the weak plumes a mass flow rate of
1.5×106 Kgs−1 has been fixed, while for the strong plume the value is 1.5×109 Kgs−1.10

The temperature pressure and density profiles used for the test case without wind (Test
Case 1) are those defined by the International Organization for Standardization for the
International Standard Atmosphere, while the profiles for the other two test cases come
from reanalysis data.

For all the runs presented here, a single family of particles has been used, with15

a normal distribution (with parameters µ and σ) for the mass concentration as a function
of the diameter expresses in the φ scale and with density varying according to Eq. (3).

We first present a comparison of the plume profiles obtained with the 3 different de-
scriptions presented in the previous sections and highlighted in the three colored boxes
of Fig. 2 for the Test Case 2: method of moments for the particle number being func-20

tion of the size expressed in meters; method of moments for the particle mass fraction
being function of the size expressed in the φ scale; discretization in uniform bins in
the φ scale. For this comparison, the mass flow rate at the vent is 1.5×106 Kgs−1 and
a rotating wind is present, as shown in Fig. 3, while the mean and the SD of the initial
total grain size distribution are respectively 2 and 1.5, expressed in the φ scale. The25

results of the numerical simulations obtained with the three different formulations are
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presented in Fig. 4 and they perfectly match, showing that the method of moments (dot-
ted lines), both applied to the continuous distribution of the particles number (red) or to
the mass distribution (green), gives the same results of the classical formulation based
on the discretization of the mass distribution in bins (solid line). For these simulations,
we used only the first 6 moments of the distributions, while 13 bins have been em-5

ployed with the discretized formulation. This results in a smaller number of equations
to solve for the method of moments and, despite the additional cost of the method
of moments due to the evaluation of the quadrature points and formulas through the
Wheeler algorithm, in a smaller computational time, with a gain of about 30 %.

5.2 Simulation results10

In this section we want to study the variation during the ascent of solid mass flux (due
to particles settling) and of the mean and the variance of the mass distribution along
the column. As shown in the previous section, there are no significant differences in the
results obtained with the three different descriptions of the grain size distribution. For
this reason, in the following we restrict the analysis only to the formulation based on15

the moments of the mass fraction distribution as a function of the diameter expressed
in the φ scale. With this approach, the mean, the variance and the skewness of the
mass distribution along the column are easily obtained from the first 4 moments Π(i ) of
the mass fraction distribution.

In Fig. 5 we present the results relative to the Test Case 2 for an initial particle size20

distribution with mean diameter 2 and SD 1.5, expressed in the φ scale. In the left and
middle panels the mean, the variance and the skew of the mass fraction distribution
are shown respectively, while in the right panel the cumulative loss of solid mass flux
is plotted as a percentage of the initial value. We observe a decrease in the mean
size of the particles, due to the different settling velocities of particles of different sizes.25

A decrease in the variance of the size distribution with height is also observed from
the second plot. We remark that the particles have a normal distribution only at the
base of the column (resulting in a null skewness), and the negative skew at the top of
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the column indicates that the tail on the left side of the grain size distribution is longer
than the tail on the right side, i.e. the mass is more concentrated on the right of the
spectrum of particle sizes (finer particles). For this reason we do not have to look at the
mean and the variance plotted in Fig. 5 as the parameters of a normal (and symmetric)
distribution. Nonetheless the changes in the mean, the variance and the skewness,5

we remark that these changes are quite small and for this reason the parameters of
the total grain size distribution at the top of the eruptive column can be assumed to
be a good approximation of the parameters at the base of the column, and vice versa.
However, this is true for the specific input condition of this test case and not in general.
For this reason, it is important to quantify the uncertainty of this assumption for different10

initial total grain size distributions and different atmospheric conditions.

5.3 Uncertainty and sensitivity analysis

When dealing with volcanic processes and volcanic hazards, our understanding of the
physical system is limited, and vent parameters (volatile contents, temperature, grain
size distribution, etc.) are not always well-constrained or are constrained with signifi-15

cant uncertainty. These factors mean that it is difficult to predict the characteristic of
the ash cloud released from the volcanic column with certainty. The best alternative is
to quantify the probability of the outcomes (for example the grain size distribution at
the top of the column) by coupling deterministic numerical codes with stochastic ap-
proaches. It is our goal in this work also to assess the ability to systematically quantify20

the uncertainty and the sensitivity of the plume model outcomes to uncertain or vari-
able input parameters, in particular to those characterizing the grain size distribution at
the base of the eruptive column.

Uncertainty quantification (UQ) or nondeterministic analysis is the process of char-
acterizing input uncertainties, propagating forward these uncertainties through a com-25

putational model, and performing statistical or interval assessments on the resulting
responses. This process determines the effect of uncertainties on model outputs or
results. In particular, in this work we wanted to investigate for different test cases the
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uncertainty in four response functions (plume height, solid mass flux lost and mean and
variance of the mass fraction distribution at the top of the eruptive column) when the
mean and the SD of the distribution at the base are random variables with a uniform
probability distribution in the space (µ,σ) ∈ [−1; 3]× [0.5; 2.5].

In volcanology Monte Carlo simulations are frequently used to perform uncertainty5

quantification analysis. These methods rely on repeated random sampling of input pa-
rameters to obtain numerical results; typically one runs simulations many times over in
order to obtain the distribution of an unknown output variable. The cost of the Monte
Carlo method can be extremely high in terms of number of simulations to run, and thus
several alternative approach have been developed. Latin hypercube sampling is an-10

other sampling technique for which the range of each uncertain variable is divided into
Ns segments of equal probability, where Ns is the number of samples requested. The
relative lengths of the segments are determined by the nature of the specified probabil-
ity distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables,15

a sample is selected randomly from each of these equal probability segments. These
Ns values for each of the individual parameters are then combined in a shuffling op-
eration to create a set of Ns parameter vectors with a specified correlation structure.
Compared to Monte Carlo sampling, the Latin hypercube sampling has the advantage
that in the resulting sample set every row and column in the hypercube of partitions has20

exactly one sample, and thus a smaller number of samples is required to cover all the
parameter space. In the left panel of Fig. 6 an example of Latin hypercube sampling
with Ns = 10 and a uniform distribution probability for both µ and σ is plotted.

An alternative approach to uncertainty quantification is the so-called generalized
Polynomial Chaos Expansion method (gPCE), a technique that mirrors deterministic25

finite element analysis utilizing the notions of projection, orthogonality, and weak con-
vergence. PCE was developed by Norbert Wiener in 1938 and it soon become widely
used because of its efficiency when compared to Monte Carlo simulations. The term
“Chaos” here simply refers to the uncertainties in input, while the word “Polynomial”

3772

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 3745–3790, 2015

PLUME-MoM

M. de’ Michieli Vitturi
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

is used because the propagation of uncertainties is described by polynomials. If ζ is
the vector of uncertain input variables, the aim of the gPCE is to express the output
function Y in the form of a polynomial γ as follows:

γ(ζ ) = γ0 +γ1P1(ζ )+γ2P2(ζ )+ . . .+γ3P3(ζ ) (55)

where Pi are polynomials which form an orthogonal basis. The choice of the polyno-5

mials basis depends on the probability distribution of the input variables. In particular,
for a uniform distribution, the basis of the expansion is given by the Lagrange poly-
nomials. For the application presented in this work the coefficients of the expansion
have been evaluated using a spectral projection where the computation of the required
multi-dimensional integrals is based on the tensor product of one-dimensional Gaus-10

sian quadrature rules. In order to compute the quadrature points, the grid used in our
work is the Clenshaw–Curtis grid (Fig. 6, right), representing a good solution for a multi-
dimensional Gaussian quadrature with a small number of variables.

We present here the results of several tests performed coupling the plume model
with the Dakota toolkit (Adams et al., 2013) to investigate systematically the capability15

of the LHS and the gPCE techniques to assess the uncertainty in four response func-
tions (plume height, solid mass flux lost and mean and variance of the mass fraction
distribution at the top of the eruptive column) when the mean and the variance at the
base are unknown. For all the test cases two sets of 1000 and 2000 simulations have
been performed for the LHS, and the results have been compared with those obtained20

with three tests for the gPCE and respectively 9, 36 and 91 simulations performed for
the multi-dimensional quadrature. In order to compare the results, the cumulative dis-
tributions of the four response functions have been plotted in Fig. 7 for Test Case 1 (no
wind). On the x axes we can see the range of the values obtained for the response
functions: −1–3.5 for the mean of the TGSD at top of the column expressed in the25

φ scale; 0.4–2.2 for the SD; 10.41–10.47 km for the column height and 10–60 % for
the percentage of solid mass flux lost. All the uncertainty quantification tests produced
very similar results, with a small difference in the cumulative distribution observed only
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in the distribution of the solid mass flux lost obtained with the gPCE technique and 9
and 36 quadrature points. Similar results have been obtained for the other Test Cases
(not shown here). Thus, the results highlights that gPCE represents a valid alterna-
tive to Monte Carlo simulations, with a number of runs required to produce the same
accuracy reduced by a factor 10 (91 simulations vs. 1000 simulations).5

As mentioned previously, the aim of the gPCE is to express the output of the models
as polynomials and these polynomials can be used to obtain response surfaces for the
output parameters as functions of the unknown input parameters. In the four bottom
panels of Fig. 7 the contours of the four response surfaces for the output investigated
in this work have been plotted, showing the dependence on the uncertain input pa-10

rameters. The mean and the SD of the TGDS at the top of the eruptive column clearly
reflects the corresponding values at the bottom, with a small effect on the mean size at
the top of larger values of the bottom SD, resulting in an increase in the average grain
size (see the curves in the first panel bending on the left for higher values of σ). Con-
versely, the plume height for this test case shows a non-linear dependency but at the15

same time a small sensitivity to the initial grain size distribution, with changes smaller
than 1 % of the average height. This can be explained by the fact that a large amount of
air is entrained in the column during the ascent and the contribution of the solid fraction
to the overall dynamics becomes small compared to that exerted by the gas. Finally,
we observe that the loss of particles is mostly controlled by mean size of the TGSD.20

In Fig. 8 the same contour plots are shown for the polynomial expansion computed
for Test Case 2 (top) and Test Case 3 (bottom) with 91 quadrature points. The results
show again that the total grain size distribution at the base of the vent represents
a reasonable approximation of that at the top of the column. For these test cases, both
the column height and the solid mass lost appear to be mostly controlled by the mean25

size of the TGSD at the base of the column, with a small sensitivity of the height to the
initial grain size distribution. We also observe that the maximum percentage of loss in
the solid mass flux is about 15 % for the strong plume simulations, and it is attained for
larger mean sizes and smaller dispersion of the initial TGSD. This value is noticeably
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smaller than that obtained for the weak bent test case (≈ 40%) and for the weak test
case without wind (≈ 60%). Despite the loss of particles, in both the cases the range of
variation of the column height is quite small and, as previously mentioned, this is due
to the large amount of air entrained in the volcanic column that reduce the contribution
of the solid fraction to the overall dynamics. As an example to understand the relvance5

of the entrained aid, for a simulation performed for the weak plume without wind and
with µ = 2 and σ = 1.5 in the φ scale, the mass flow rate at the top of the column is
1.2×108 Kgs−1, compared to the value at the base of 1.5×106 Kgs−1.

5.4 Sensitivity analysis

With the polymomial chaos expansion it is also possible to easily obtain the variance-10

based sensitivity indices with no additional computational cost. In contrast with some
instances, where the term sensitivity is used in a local sense to denote the computation
of response derivatives at a point, here the term is used in a global sense to denote the
investigation of variability in the response functions. In this context, variance-based de-
composition is a global sensitivity method that summarizes how the variability in model15

output can be apportioned to the variability in individual input variables (Adams et al.,
2013). This sensitivity analysis uses two primary measures, the main effect sensitivity
index Si and the total effect index Ti . These indices are also called the Sobol indices.
The main effect sensitivity index corresponds to the fraction of the uncertainty in the
output, Y , that can be attributed to input xi alone. The total effects index corresponds20

to the fraction of the uncertainty in the output, Y , that can be attributed to input xi
and its interactions with other variables. The main effect sensitivity index compares the
variance of the conditional expectation Varxi [E (Y |xi )] against the total variance Var(Y ).
Formulas for the indices are:

Si =
Varxi

[
(Y |xi )

]
Var(Y )

(56)25
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and

Ti =
E (Var(Y |X−i ))

Var(Y )
(57)

where Y = f (x) and x−1 = (x1, . . .,xi−1,xi+1, . . .,xm). Similarly, it is also possible to de-
fine the sensitivity indices for higher order interactions such as the two-way interaction
Si ,j . The calculation of Si and Ti requires the evaluation of m-dimensional integrals5

which are typically approximated by Monte-Carlo sampling. However, in stochastic ex-
pansion methods, it is possible to obtain the sensitivity indices as analytic functions of
the coefficients in the stochastic expansion.

The results of the sensitivity analysis for the four outputs and the three test cases
investigated are presented in the bar plot of Fig. 9. For each of the four groups (one10

for each of the different output functions) the three bars represent the main sensitivity
indices for the three test cases (test 1 on the left, test 2 in the middle and test 3 on
the right) while the different colors are for the sensitivity indices with respect to different
variables (blue is for the mean of the initial TGSD, green for the standard variation and
brown for the 2nd order coupled interaction). Again, the sensitivity analysis confirms15

that the mean and the SD of the grain size distributions at the top of the eruptive
column are controlled by the respective parameters of at base of the column. The mean
of the TGSD also controls the percentage of solid mass flux lost during the rise of the
column and the plume height for the two test cases with wind, while for the weak test
case without wind the dispersion of the distribution and second-order interaction also20

play a major role in controlling plume height variability. However, as already observed
with the uncertainty quantification analysis, we remark that the variability in the plume
height, when the mean and the SD of the TGSD vary in the investigated ranges, is
extremely small for all the test cases (less than 1 % with respect to the average values)
and thus the investigation of how the variability in model output can be apportioned to25

the variability in individual input variables is less relevant for the plume height than for
the other output parameters.
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6 Conclusions

In this work we have presented an extension, based on the method of moments, of the
Eulerian steady-state volcanic plume model presented in Barsotti et al. (2008) (derived
from Bursik, 2001). Two different formulations, one based on a continuous distribu-
tion of the number of particles as a function of the size and a second based on the5

continuous distribution of the mass fraction, have been presented. The tracking of the
moments of mass distribution, defined as a function of the Krumbein phi scale, has the
advantage that with the first three moments only we are able to recover the mean and
the SD of the total grain size distribution. The results of a comparison between the two
formulations based on the method of moments and the classical formulation based on10

the discretization of the mass distribution in bins show that the different approaches
produce the same results, with an advantage of the method of moments in terms of
computational costs. Furthermore, a formulation based on continuous description of
particle size, is better suited to properly describe additional processes such as aggre-
gation.15

An uncertainty quantification analysis has also been applied to the formulation based
on the moments of the mass distribution. The results show for all the test cases a small
change of the mean and variance of the particle mass distribution along the column,
indicating that the total grain size distribution at the base of the vent represents a rea-
sonable approximation of that at the top of the column. Furthermore, based on the20

plume model assumptions and outcomes, we observe a small sensitivity of the plume
height to the initial grain size distribution, with variations of the order of tens of meters.

The comparison between the latin hypercube sampling technique and the general-
ized polynomial chaos expansion method shows that the latter only requires 91 sim-
ulations to produce the same results, in terms of cumulative probability distributions25

of several output, obtained with 1000 simulations and the LHS. In fact, the full uncer-
tainty quantification analysis performed on a High Performance Computing 48 multi
core Shared Memory system (HPC-SM) at Istituto Nazionale di Geofisica e Vulcanolo-
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gia (INGV), section of Pisa, Italy, required less than 2 s for the gPCE method with
91 quadrature points. These results make the new numerical code presented here,
coupled with the uncertainty technique investigated, well-suited for real time hazard
assessment.

Code availability5

The source code with the input files for some simulation presented in this work are
available for download on the Volcano Modelling and Simulation gateway (http://vmsg.
pi.ingv.it/) and on the site for collaborative volcano research and risk mitigation Vhub
(https://vhub.org/).
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Table 1. Input parameters used for the numerical simulations. Vent height is the elevation of the
base of the column above sea level. The values ρ1,2 and D1,2 are used to compute the density
of the particles as a function of the diameter, according to Eq. (3). The values reported for µ
and σ define the range used for the uncertainty quantification and sensitivity analysis.

Parameters Units Test Case 1 Test Case 2 Test Case 3

Radius m 27 27 708
Velocity ms−1 135 135 275
Temperature K 1273 1273 1053
Gass Mass Fraction 0.03 0.03 0.05
Vent Height m 1500 1500 1500
ρ1 kgm−3 2000 2000 2000
ρ2 kgm−3 2600 2600 2600
D1 m 8×10−6 8×10−6 8×10−6

D2 m 2×10−3 2×10−3 2×10−3

µ φ −1.0–3.0 −1.0–3.0 −1.0–3.0
σ φ 0.5–2.5 0.5–2.5 0.5–2.5
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Figure 1. Schematic representation of the Eulerian plume model. The dashed black line repre-
sent the axis of the curvilinear coordinate s.
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Figure 2. Visualization of a normal initial distribution in the Krumbein φ scale for the solid
particles. On the top the particle number distribution expressed as a function of the diameter
expressed in meters is plotted. On the second and third plots from the top the corresponding
distributions of volume and mass are plotted, these two being different because the density is
a function of the diameter. On the forth plot the continuous distribution (lognormal) of mass
fraction as a function of the φ scale is plotted, while in the last plot the distribution has been
discretized with 13 bins in the range (−4; 8). On each panel different average radii are also
plotted, together with the mean of the initial distribution. The first, fourth and fifth panel are
highlighted with different color, also used in Fig. 4 for the solutions obtained with the three
different representation of the initial grain size distribution.
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Figure 3. Atmospheric profiles for the three test cases. The height is expressed in ma.s.l. and
for all the test cases the vent is located at 1500 ma.s.l. For the wind profiles only the profiles for
the two test cases with wind are plotted.
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Figure 4. Height vs. radius (left) and velocity (right) for a weak plume, simulated with three
different models. In blue the profiles obtained using 13 bins, in red the profiles obtained us-
ing a ocntinuous distribution of the particles number density and in green using a continuous
distribution of the mass fraction.
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Figure 5. Particles distribution parameters (mean, variance and skewness) and cumulative loss
of solid mass flux for the weak plume test case, simulated with the formulation based on the
moments of the mass fraction distribution.
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Figure 6. Two parameters Latin Hypercube Sampling with 10 points (left) and tensor product
grid using 9×9 Clenshaw–Curtis points (right).

3787

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/3745/2015/gmdd-8-3745-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 3745–3790, 2015

PLUME-MoM

M. de’ Michieli Vitturi
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Top TGSD Mean(φ)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top TGSD Standard deviation(φ)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

10.4 10.42 10.44 10.46 10.48
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Column height (km)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solid Mass Flux Fraction Lost

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

L.H.S. 1000
L.H.S. 2000
P.C.E. 3,3
P.C.E. 6,6
P.C.E. 9,9

BottomTGSD µ (φ)

B
ot

to
m

T
G

S
D
σ

(φ
)

0 1 2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

BottomTGSD µ (φ)

B
ot

to
m

T
G

S
D
σ

(φ
)

0 1 2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

BottomTGSD µ (φ)

B
ot

to
m

T
G

S
D
σ

(φ
)

0 1 2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

BottomTGSD µ (φ)

B
ot

to
m

T
G

S
D
σ

(φ
)

0 1 2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

10.41

10.42

10.43

10.44

10.45

10.46

15

20

25

30

35

40

45

50

55

60

Figure 7. Cumulative distributions and response surfaces for test Case 1 (weak plume without
wind). In the top panels the cumulative probability for several variables describing the outcomes
of the simulations (mean and variance of the grain size distribution at the top of the column,
column height and cumulative fraction of solid mass lost) are plotted for the uncertainty quan-
tification analysis carried out with the two different techniques and for different numbers of
simulations. The contour plots of the response functions of the four variables, obtained with the
PCE with 91 quadrature points, are plotted in the bottom panels.
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Figure 8. Response surfaces for Test Case 2 (weak plume with wind, 4 top panels) and Test Case 3 (strong

plume with wind, 4 bottom panels) obtained with the PCE with 91 quadrature points. Please not that the color

scale is not consistent between plots.

index Si and the total effect index Ti. These indices are also called the Sobol indices. The main

effect sensitivity index corresponds to the fraction of the uncertainty in the output, Y , that can be at-

tributed to input xi alone. The total effects index corresponds to the fraction of the uncertainty in the

output, Y , that can be attributed to input xi and its interactions with other variables. The main effect

sensitivity index compares the variance of the conditional expectation V arxi [E(Y |xi)] against the590

total variance V ar(Y ). Formulas for the indices are:

Si =
V arxi [(Y |xi)]

V ar(Y )
(56)

and

Ti =
E(V ar(Y |X−i))

V ar(Y )
(57)

where Y = f(x) and x−1 = (x1, . . . ,xi−1,xi+1, . . . ,xm). Similarly, it is also possible to define the595

sensitivity indices for higher order interactions such as the two-way interaction Si,j . The calculation

of Si and Ti requires the evaluation of m-dimensional integrals which are typically approximated

by Monte-Carlo sampling. However, in stochastic expansion methods, it is possible to obtain the

sensitivity indices as analytic functions of the coefficients in the stochastic expansion.

The results of the sensitivity analysis for the four outputs and the three test cases investigated are600

presented in the bar plot of Figure 9. For each of the four groups (one for each of the different output

functions) the three bars represent the main sensitivity indices for the three test cases (test 1 on the

25

Figure 8. Response surfaces for Test Case 2 (weak plume with wind, 4 top panels) and Test
Case 3 (strong plume with wind, 4 bottom panels) obtained with the PCE with 91 quadrature
points. Please not that the color scale is not consistent between plots.
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Figure 9. Sobol indices. For each of the four output parameters the three bars are for the
different test cases: Test Case 1 on the left, Test Case 2 in the middle and Test Case 3 on the
right. For each test case the different colors of the bars are for the different sensitivity indexes:
blue for first order sensitivity index with respect to the the bottom TGSD mean, green for the
bottom TGSD SD and brown for the second order combined sensitivity index.
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